Некоторые часто используемые интегралы — различия между версиями

Материал из Вики ИТ мехмата ЮФУ
Перейти к: навигация, поиск
Строка 103: Строка 103:
 
|content =  
 
|content =  
 
''Способ 1.'' <br />
 
''Способ 1.'' <br />
<!--:Положим <math>\ x = a \operatorname{sh} t </math> <br />
+
:Рассмотрим сначала интеграл <br /><math>\int\!{dx \over \sqrt{x^2 + a^2}}</math>:
 +
:Положим <math>\ x = a \ \operatorname{sh} t </math> <br />
 
:Тогда
 
:Тогда
:: <math>\ dx = {(a \operatorname{sh} t)}^\prime =  
+
:: <math>\ dx = {(a \ \operatorname{sh} t)}^\prime =  
a \operatorname{ch} t \ dt</math>
+
a \operatorname{ch} t \ dt</math>
 
: <math>\int\!{dx \over \sqrt{x^2 + a^2}} =  
 
: <math>\int\!{dx \over \sqrt{x^2 + a^2}} =  
a \int\! {\frac{\operatorname{ch} t \ dt}{\operatorname{ch} t}} =  
+
\int\! {\frac{a \ \operatorname{ch} t \ dt}{a \ \operatorname{ch} t}} =  
a \int\! dt = a t + C</math>
+
\int\! dt = dt + C</math>
 
:Осталось найти <math>t</math>
 
:Осталось найти <math>t</math>
:: <math>\ x = a \operatorname{sh} t</math>
+
:: <math>\ x = a \ \operatorname{sh} t</math>
:: <math>\ x = a \frac{e^t - e^{-t}}{2}</math>
+
:: <math>\ x = a \ \frac{e^t - e^{-t}}{2}</math>
 
::Обозначим <math>\ e^t = y</math>
 
::Обозначим <math>\ e^t = y</math>
 
:: <math>\ 2x = a (y - \frac{1}{y})</math>
 
:: <math>\ 2x = a (y - \frac{1}{y})</math>
 
:: <math>\ 2xy = a (y^2 - 1)</math>
 
:: <math>\ 2xy = a (y^2 - 1)</math>
 
:: <math>\ a y^2 - 2xy - a = 0</math>
 
:: <math>\ a y^2 - 2xy - a = 0</math>
:: <math>y_{1,2} = \frac{x}{a} \pm  \frac{\sqrt{x^2 + a^2}}{a}</math>
+
:: <math>y_{1,2} = x \pm  \sqrt{x^2 + a^2}</math>
 
:Т.к. <math>\ e^t > 0</math>, а, очевидно, <math>\ x - \sqrt{x^2 + a^2} < 0</math>, то нам подходит только корень  
 
:Т.к. <math>\ e^t > 0</math>, а, очевидно, <math>\ x - \sqrt{x^2 + a^2} < 0</math>, то нам подходит только корень  
<math>\frac{x}{a} \frac{\sqrt{x^2 + a^2}}{a}</math>
+
::<math>\ x +  \sqrt{x^2 + a^2}</math>
 +
:Тогда
 +
::<math>t = \ln{| x +  \sqrt{x^2 + a^2} |}</math>
 
:Значит
 
:Значит
::<math>\int\!{dx \over \sqrt{x^2+a^2}} = a t + C = </math>-->
+
::<math>\int\!{dx \over \sqrt{x^2+a^2}} = \ln \left|{x + \sqrt {x^2 + a^2}}\right| + C = </math>
 +
<br />
 +
:Аналогичным образом можно рассмотреть интеграл
 +
::<math>\int\!{dx \over \sqrt{x^2 - a^2}}</math>
 +
:положив <math>\ x = a \ \operatorname{ch} t </math>
 +
 
  
 
''Способ 2.'' <br />
 
''Способ 2.'' <br />

Версия 21:08, 13 апреля 2009

<math>\int\!\ln {x}\,dx = x \ln {x} - x + C</math>

\,dx =

x\ln x - \int\!\,dx = x\ln x - x + C </math> Доказано. }}



<math>\int\!{dx \over {x^2+a^2}} = {1 \over a}\,\operatorname{arctg}\,\frac{x}{a} + C</math>

=

\frac{1}{a^2} \int\!{dx \over { ( \frac{x}{a} )^2 + 1}} = \frac{a}{a^2} \int\!{d{ ( \frac{x}{a} ) } \over { ( \frac{x}{a} )^2 + 1}} = \frac{1}{a} \operatorname{arctg}\,\frac{x}{a} + C</math> Доказано. }}



<math>\int\!{dx \over {x^2-a^2}} = {1 \over 2a}\ln \left|{x-a \over {x+a}}\right| + C</math>

=

\int\! \left ( \frac{1}{2a (x-a)} - \frac{1}{2a (x+a)} \right ) \,dx = \frac{1}{2a} \left ( \int\! {dx \over {x-a}} - \int\! {dx \over {x+a}} \right ) = \frac{1}{2a} (\ln {|x-a|} - \ln {|x+a|} ) + C = \frac{1}{2a} \ln {\left | \frac{x-a}{x+a} \right | + C }</math> Доказано. }}



<math>\int\!{dx \over \sqrt{a^2-x^2}} = \arcsin {x \over a} + C</math>

=

\frac{1}{a} \int\!{dx \over \sqrt{1- (\frac{x}{a})^2} } = \frac{a}{a} \int\!{d {(\frac{x}{a})} \over \sqrt{1- (\frac{x}{a})^2} } = \arcsin {x \over a} + C </math> Доказано.}}


<math>\int\!{-dx \over \sqrt{a^2-x^2}} = \arccos {x \over a} + C</math>

=

\frac{1}{a} \int\!{-dx \over \sqrt{1- (\frac{x}{a})^2} } = \frac{a}{a} \int\!{-d {(\frac{x}{a})} \over \sqrt{1- (\frac{x}{a})^2} } = \arccos {x \over a} + C </math> }}



<math>\int\!{dx \over \sqrt{x^2 \pm a^2}} = \ln \left|{x + \sqrt {x^2 \pm a^2}}\right| + C, a > 0</math>

</math>:
Положим <math>\ x = a \ \operatorname{sh} t </math>
Тогда
<math>\ dx = {(a \ \operatorname{sh} t)}^\prime =

a \ \operatorname{ch} t \ dt</math>

<math>\int\!{dx \over \sqrt{x^2 + a^2}} =

\int\! {\frac{a \ \operatorname{ch} t \ dt}{a \ \operatorname{ch} t}} = \int\! dt = dt + C</math>

Осталось найти <math>t</math>
<math>\ x = a \ \operatorname{sh} t</math>
<math>\ x = a \ \frac{e^t - e^{-t}}{2}</math>
Обозначим <math>\ e^t = y</math>
<math>\ 2x = a (y - \frac{1}{y})</math>
<math>\ 2xy = a (y^2 - 1)</math>
<math>\ a y^2 - 2xy - a = 0</math>
<math>y_{1,2} = x \pm \sqrt{x^2 + a^2}</math>
Т.к. <math>\ e^t > 0</math>, а, очевидно, <math>\ x - \sqrt{x^2 + a^2} < 0</math>, то нам подходит только корень
<math>\ x + \sqrt{x^2 + a^2}</math>
Тогда
<math>t = \ln{| x + \sqrt{x^2 + a^2} |}</math>
Значит
<math>\int\!{dx \over \sqrt{x^2+a^2}} = \ln \left|{x + \sqrt {x^2 + a^2}}\right| + C = </math>


Аналогичным образом можно рассмотреть интеграл
<math>\int\!{dx \over \sqrt{x^2 - a^2}}</math>
положив <math>\ x = a \ \operatorname{ch} t </math>


Способ 2.
}}


<math>\int \sqrt{x^2 \pm a^2} \;dx = \frac{x}{2}\sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2} | + C</math>


<math>\int \sqrt{a^2-x^2} \;dx = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C</math>


См. также