Некоторые часто используемые интегралы — различия между версиями

Материал из Вики ИТ мехмата ЮФУ
Перейти к: навигация, поиск
Строка 49: Строка 49:
 
<br />положив сначала <math>\  x = a </math>:
 
<br />положив сначала <math>\  x = a </math>:
 
: <math>\ 1 = 2 a A_1 \Longrightarrow \; A_1 = \frac{1}{2a}</math>
 
: <math>\ 1 = 2 a A_1 \Longrightarrow \; A_1 = \frac{1}{2a}</math>
А затем <math>\  x = -a </math>:
+
А затем <math>\  x = -a </math>:
 
: <math>\ 1 = - 2 a A_2 \Longrightarrow \; A_2 = - \frac{1}{2a}</math>
 
: <math>\ 1 = - 2 a A_2 \Longrightarrow \; A_2 = - \frac{1}{2a}</math>
  

Версия 19:40, 22 марта 2009

<math>\int\!\ln {x}\,dx = x \ln {x} - x + C</math>

\,dx =

x\ln x - \int\!\,dx = x\ln x - x + C </math> Доказано. }}



<math>\int\!{dx \over {x^2+a^2}} = {1 \over a}\,\operatorname{arctg}\,\frac{x}{a} + C</math>

=

\frac{1}{a^2} \int\!{dx \over { ( \frac{x}{a} )^2 + 1}} = \frac{a}{a^2} \int\!{d{ ( \frac{x}{a} ) } \over { ( \frac{x}{a} )^2 + 1}} = \frac{1}{a} \operatorname{arctg}\,\frac{x}{a} + C</math> Доказано. }}



<math>\int\!{dx \over {x^2-a^2}} = {1 \over 2a}\ln \left|{x-a \over {x+a}}\right| + C</math>

=

\int\! \left ( \frac{1}{2a (x-a)} - \frac{1}{2a (x+a)} \right ) \,dx = \frac{1}{2a} \left ( \int\! {dx \over {x-a}} - \int\! {dx \over {x+a}} \right ) = \frac{1}{2a} (\ln {|x-a|} - \ln {|x+a|} ) + C = \frac{1}{2a} \ln {\left | \frac{x-a}{x+a} \right | + C }</math> Доказано. }}



<math>\int\!{dx \over \sqrt{a^2-x^2}} = \arcsin {x \over a} + C</math>

=

\frac{1}{a} \int\!{dx \over \sqrt{1- (\frac{x}{a})^2} } = \frac{a}{a} \int\!{d {(\frac{x}{a})} \over \sqrt{1- (\frac{x}{a})^2} } = \arcsin {x \over a} + C </math> Доказано.}}


<math>\int\!{-dx \over \sqrt{a^2-x^2}} = \arccos {x \over a} + C</math>



<math>\int\!{dx \over \sqrt{x^2+a^2}} = \ln \left|{x + \sqrt {x^2 \pm a^2}}\right| + C</math>



<math>\int \sqrt{x^2 \pm a^2} \;dx = \frac{x}{2}\sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2} | + C</math>


<math>\int \sqrt{a^2-x^2} \;dx = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C</math>