Основы программирования — второй семестр 08-09; Михалкович С.С.; IV часть
Лекция 8
Содержание
Деревья
Деревом назовем совокупность узлов, называемых вершинами дерева, соединенных между собой ребрами, называемыми ветвями.
<здесь будет рисунок дерева>
Количество уровней называется глубиной дерева.
Каждая вершина нижнего уровня соединяется ровно с одной вершиной предыдущего уровня.
Единственная вершина на уровне 0 называется корнем дерева.
Она не имеет вершин-предков.
Вершины, не имеющие потомков, называют листьями дерева, а совокупность всех листьев образует крону дерева.
Примеры.
- Дерево папок на диске
<здесь будет рисунок>
- Самый очевидный пример — генеалогическое древо
- Главы и пункты книги
<здесь будет рисунок>
- Дерево разбора выражений
a*b + c*d
<здесь будет рисунок>
Теперь дадим рекурсивное определение дерева:
Дерево ::= корень список_поддеревьев | ε Список поддеревьев ::= список_поддеревьев дерево | ε // ε означает «пусто»
Дерево называется бинарным (двоичным), если каждая его вершина имеет не более двух потомков.
(Далее бинарные деревья будем сокращать как БД)
Двоичное_дерево ::= корень левое_поддерево правое_поддерево | ε Левое_поддерево ::= двоичное_дерево Правое_поддерево ::= двоичное_дерево
БД называется идеально сбалансированным, если для каждого узла количество узлов в его правом поддереве отличается от количества узлов в его левом поддереве максимум на единицу. <здесь будут рисунки деревьев>
Полным называют БД, у которого каждая вершина, не являющаяся листом, имеет ровно двух потомков, и все листья находятся на последнем уровне.
Нетрудно заметить, что количество узлов (u) и количество ребер (v) связаны простой формулой: <math>u = v + 1</math>.
Количество узлов в полном БД высчитывается по формуле
<math>\ 2^{n+1} - 1</math>
Действительно:
u0 = 1 = 20
u1 = 2 = 21
u2 = 4 = 22
...
un = 2n
Значит общее количество узлов в дереве глубины n:
u(n) = 20 + 21 + 22 + ... + 2n
Узнаем геометрическую прогрессию с n + 1 членами. А её сумма:
<math>\ S_{n+1} = b_1 \frac{q^{n+1} - 1}{q - 1} = 1 \frac{2^{n+1} - 1}{2 - 1} = 2^{n + 1} - 1</math>
Порядки обхода деревьев
- Инфиксный (левое, корень, правое)
- Префиксный (корень, левое, правое)
- Постфиксный (левое, правое, корень)
Задачи на бинарные деревья
Класс TreeNode<T>
Создание идеально сбалансированного дерева.
Вывод узлов дерева в инфиксном, префиксном, постфиксном порядке.
Связь деревьев и рекурсии.
Определение глубины дерева.
Количество листов в дереве.
Поиск элемента в дереве.
Бинарные деревья поиска
Определение БДП.
Добавление в БДП. Инвариантность БДП относительно операции добавления.
Оценка количества операций при добавлении. Худший случай.
Сортировка деревом. Асимптотическая сложность алгоритма.
Поиск элемента в БДП.
Произвольные деревья
TreeNode = class
data: integer;
leftChild, rightSibling: TreeNode;
end;
function CreateRandomTree(n: integer; m: integer): TreeNode;
// n - количество сыновей, m - количество уровней
begin
Result := nil;
if m=0 then exit;
for var i:=1 to n do
Result := new TreeNode(Random(100), CreateRandomTree(Random(1,5), m-1), Result)
end;
root := CreateRandomTree(3,4);
root := new TreeNode(Random(100), root, nil);
procedure PrintTree(r: TreeNode);
begin
while r<>nil do
begin
write(r.data,' ');
PrintTree(r.leftChild);
r := r.rightSibling;
end
end;