Конспект лекций «Компьютерные сети»

Материал из Вики ИТ мехмата ЮФУ
Перейти к: навигация, поиск

Лекция 1

Базовые понятия

Компьютерная сеть — это совокупность компьютеров, которые могут обмениваться между собой информацией.

Компоненты компьютерной сети:

  • компьютер;
  • линии связи (коммуникационное оборудование) — техника, которая реализует возможность обмена информацией (провода, устройства, иногда — компьютер, выполняющий функцию коммуникационного оборудования);
  • операционная система, в особенности, модули ОС, реализующие сетевое взаимодействие;
  • распределенные приложения — программы, которые работают одновременно на разных компьютерах, например, WWW.

Сервер — компьютер или программа, предоставляющая некоторые услуги.

Выделенный сервер — это компьютер, служащий только для обслуживания клиентских машин.

Доступ к нему обычно получают только администраторы системы для выполнения задач управления, мониторинга и поддержки работоспособности. Часто они выполняют только какую-то одну задачу. Например, файл-сервер.

Клиент — это компьютер или программа, запрашивающая услуги.

Клиенты бывают толстыми, тонкими и сверхтонкими.

Сравнительные характристики клиентов

толстый клиент тонкий клиент сверхтонкий клиент
Данные хранятся на сервере
Программа-«сервер» хранится и работает на сервере
Программа-«клиент» (стандартное ПО, например, браузер) хранится и выполняется на клиенте
Данные перекачиваются с сервера на клиент и обрабатываются программой - «клиентом» на клиенте
Данные обрабатываются на сервере
Интерфейс строится программой-«клиентом» на клиенте
Интерфейс строится на сервере и передается программе-клиенту

При доступе к почте через почтовую программу, например, Mozilla Thunderbird (данные хранятся на сервере, а интерфейс обеспечивается почтовой программой-клиентом) можно сказать, что интерфейс строится программой-«клиентом» на клиенте. В случае же доступа к почте через веб-интерфейс (данные хранятся на сервере и интерфейс (веб-странички) генерируются сервером) интерфейс строится на сервере и передается программе-клиенту.

Протокол определяет:

  • формат сообщений;
  • очередность сообщений;
  • действия, которые необходимо выполнять при получении, приеме сообщений или при наступлении иных событий.

Пропускная способность канала связи (bandwidth) — наибольшая скорость передачи информации по каналу связи. Измеряется числом передаваемых двоичных символов в 1 с. Скорость передачи зависит от физических свойств канала связи, статистических свойств помех, способа передачи, приема сигналов и др..

Классификация компьютерных сетей

Классификация компьютерных сетей по территории

  • Local Area Network (LAN) — сети одной квартиры, дома, организации.
  • Metropolian Area Network (MAN), городские — высокоскоростные каналы связи в пределах большого города.
  • Региональные — объединяют компьютеры географической области.
  • Wide Area Network (WAN),глобальные.

Примеры Пользователи Spark объединены в локальную сеть, которую можно назвать городской (MAN). Региональная сеть: Рунет. WAN: Интернет, сети магистральных Интернет провайдеров, сети организаций с филиалами по всему миру.

Классификация компьютерных сетей по топологии

Классификация компьютерных сетей по типу среды передачи

  • Проводные
    • витая пара;
    • коаксильный кабель;
    • оптоволокно.
  • Беспроводные
    • радиосвязь (WiFi, WiMAX);
    • инфракрасная связь;
    • СВЧ-связь (Bluetooth).


Структура сети Интернет

Локальные, региональные, магистральные провайдеры

Локальный (местный) провайдер (ISP – Internet Service Provider) – поставщик услуг Интернета, работающий (как правило) в пределах одного города (ЮГИНФО, ЦТС, Интеркабель).

Региональный провайдер – одной страны, области, округа (ТрансТелекомКавказ, ЮТК, ЦТС).

Магистральный провайдер – страны, континента, земного шара (Global one Orange), Голден Телеком, Ростелеком, Verizon, Cogent)

Точки присутствия (POP), точки обмена трафиком (IX)

Структура сети Интернет.gif

Ядро Интернета (или Core Backbone Network) составляют сети так называемых провайдеров первого уровня (Network Server Provider Tier-1) или магистральных провайдеров, наиболее крупными из которых являются UUNET(куплен Verizon), AT&T(в Америке), MCI (куплен Verizon), GTE/BBN (вместе с AT&T в SBC) и Sprint.

Эти сети построены в основном на базе технологий ATM и Frame Relay. Для их магистралей характерны каналы 622 и 2488 Мбит/с соответственно. Иногда встречаются каналы 9952 Мбит/с и более. Сети NSP Tier-1 свободно обмениваются между собой трафиком, причем основная часть этого обмена сосредоточена в двух зонах (Metropolian Exchange Area,MAE), расположенных в Нью-Йорке и Сан-Франциско. Хотя наибольшая концентрация NSP первого уровня приходится на США, "ареал распространения" этих сетей не ограничивается только этой страной. Другие страны получают доступ к ядру Интернета либо благодаря NSP первого уровня, имеющим точки присутствия (POP-Point of Presence) по всему миру (например, UUNET "дотягивается" и до Европы, и до Юго-Восточной Азии), либо локальным NSP первого уровня (эта практика распроcтранена в Азии).

Ниже магистральных провайдеров по иерархии расположены сетевые провайдеры следующего уровня — региональные, соединенные между собой высокоскоростными каналами передачи данных, которые, в свою очередь предоставляют доступ к Интернету местным (локальным) провайдерам (Internet Service Privider, ISP). Индивидуальные пользователи и компании-клиенты получают доступ к ресурсам Интернета именно при помощи ISP. Соединение между ISP и пользователями (частными или корпоративными) обычно осуществляется при помощи коммутируемых линий (обычных телефонных или ISDN), или посредством так называемых выделенных линий, позволяющим клиенту иметь постоянное соединение с Интернетом. Частным случаем выделенных линий являются: подключение при помощи ADSL и использование инфраструктуры кабельного телевидения. Таким образом, путь между произвольным Web-сервером и компьютером пользователя состоит из трех основных частей — участка между Web-сервером и скоростной магистралью, участка скоростной магистрали и участка, связывающего пользователя с магистралью.

На связистком жаргоне первый участок обычно называют "первой милью", а третий — "последней милью".

Недостаточная скорость передачи данных может создать неприятности как на первой, так и на последней миле. Однако проблемы первой мили решаются довольно просто — надо перевести сервер из офиса компании в серверный центр, который непосредственно подключен к магистрали. Эта услуга называется collocation.

Проблема последней мили гораздо серьезнее. Ее решение состоит в распространении систем высокоскоростного доступа, использующих технологию xDSL (в первую очередьADSL), систем кабельного телевидения. В таких системах скорости передачи данных легко достигают несколько мегабит в секунду, что для большинства приложений достаточно.

Point Of Presence (POP), точка присутствия – место расположения оборудования оператора связи (провайдера), к которому возможно подключение клиентов.

Обычно, POP – это узел связи или датацентр, возможно, отдельная единица коммуникационного оборудования, вынесенная ближе к месту концентрации потенциальных клиентов, например, в офисное здание. Данный термин применяется при планировании сетей передачи данныхм и расчёте их стоимости. Обычно провайдер, оказывающий услуги по подключению к сети или передаче данных, указывает стоимость своих услуг именно в точке присутствия. Для определения же полной стоимости следует учесть построение (аренду) и эксплуатацию канала связи от точки присутствия до оборудования клиента (так называемой, последней мили). Поэтому при планировании сетей территориальное расположение точек присутствия различных провайдеров имеет не меньшее значение, чем стоимость и технические характеристики их услуг.

Например, при предоставлении услуги подключения к сети Интернет последняя миля — участок от порта коммутатора провайдера на его узле связи до порта маршрутизатора клиента в его офисе. Для услуг коммутируемого (dial-up, диалапного) подключения последняя миля — это участок между модемом пользователя и модемом (модемным пулом) провайдера. В последнюю милю обычно не включается разводка проводов внутри здания. К технологиям последней мили обычно относят xDSL, Wi-Fi, WiMax. К оборудованию последней мили можно отнести xDSL-модемы, мультиплексоры доступа, оптоволоконные модемы и преобразователи, радиомультиплексоры. Есть специализированные компании и подразделения крупных компаний связи, которые занимаются исключительно построением последней мили.

В России и многих других странах именно последняя миля сдерживает расширение аудитории Интернета, внедрение новых технологий, предоставление новых телекоммуникационных услуг. Дело в том, что последняя миля, как правило, является самым «узким» участком канала от пользователя до поставщика услуг. Расширить же этот канал стоит достаточно дорого из-за рассредоточенности пользователей.

IXPnternet eXchange Point (IXP), точка обмена трафиком – инфраструктура, которая позволяет различным провайдерам обмениваться трафиком.

Создаются для беспрепятственного пропускания трафика между различными провайдерами без загрузки внешних магистральных каналов. В местах, где дальняя связь плохо развита, местные региональные операторы оплачивают трафик во много раз дороже, чем операторы в США или Европе. Поэтому они организовывают точки обмена трафиком, через которые и пропускают крайне дешёвый трафик между своими клиентами.

Коммутация каналов и коммутация пакетов

Коммутация каналов

В 60-х годах основным средством связи были телефонные линии, использующие принцип коммутации каналов.

Телефонные линии.gif
Они имели существенный недостатотк: нельзя освободить канал в период простоя. Под каждый сеанс разговора между двумя абонентами выделяется отдельный канал на всем протяжении линии. Он устанавливается в момент соединения и занят, пока есть соединение. Если нет свободных каналов, то линия становится перегруженной.

Основные способы организации каналов, по которым могут разговаривать много пользователей: частотное мультиплексирование (разделение) (выделяются частотные поддиапазоны) и временное мультиплексирование (используются все частоты, но в определенное время, т.е. канал используется попеременно каждым абонентом.).

Коммутация пакетов

Коммутация пакетов.gif

Сообщение разбивается на пакеты, которые могут идти независимо друг от друга (по разным маршрутам). В случае когда пакетов много, организуются очереди. Исключение: в сетях с режимом асинхронной передачи (Asynchronous Transfer Mode, ATM) коммутация каналов сочетается с коммутацией пакетов (см. главу 5 Куроуза и Росса).

История развития сети Интернет

1969 Рождение ARPAnet

Леонард Клейнрок рядом с первым интерфейсным процессором сообщений (коммутатором пакетов)
Леонард Клейнрок — один из авторов технологии коммутации пакетов. Он открыл возможность совместного использования эфира независимыми узлами сети.

Alohanet — первая радиосеть с коммутацией пакетов.

1970-1980 Возникновение новых компьютерных сетей и Интернета

Параллельно с развитием ARPAnet появлялись другие компьютерные сети: ALOHAnet (радио сеть Гавайского университета , Telenet, Cyclades (во Франции) , SNA и др. Возникла задача о соединении сетей с различной архитектурой. Роберт Канн совместно с Уинтоном Серфом разработал новую версию протокола, которая впоследствии была названа TCP/IP (Transmission Control Protocol , Протокол управления передачей данных ; IP - Internet Protocol). Изначально это был один протокол TCP, который осуществлял маршрутизацию и надежную доставку пакетов, использовал глобальную адресацию компьютеров. Эксперименты с пакетной передачей голосовых сообщений показали, что иногда требуется, чтобы протокол допускал потерю некоторых пакетов при передаче информации. Это привело к появлению протокола IP, несущего транспортные функции и протоколов TCP и UDP (User Datagram Protocol ) для надежной и ненадежной передачи данных.

1980-1990 Распространение компьютерных сетей

Разработана система доменных имен DNS (Domain Name System), связавшая IP адреса компьютеров с их мнемоническими именами

Середина 80-х. Создание NFSnet (сеть национального научного фонда США (NFS)

Интересен тот факт, что основой сети NFSNET стали пять очень мощных компьютеров, соединенных между собой сверхбыстрыми (на тот момент) линиями связи. Пользователи подключались к сети и использовали мощности этих компьютеров. NFSNЕТ унаследовала от ARPANET принципы построения, обеспечивающие высокую надежность, а также три уровня протоколов (под протоколом в данном случае понимается соглашение о способе передачи информации; понятно, что если разные части сети будут использовать разные способы передачи, то они друг друга просто не поймут) — сетевой, транспортный и протокол приложений, а также добавила к ним протокол межсетевого уровня под названием IP (интернет-протокол). Полученный комплект протоколов получил название TCP/IP — как раз на нем-то и базируется передача информации в Интернете.

Сеть NFSNET была более прогрессивной и предоставляла намного более мощные возможности по сравнению с ARPANET, поэтому ARPANET была ликвидирована в конце восьмидесятых. NFSNET заняла место прародительницы Интернета, а это потребовало ее умощнения и некоторой реорганизации, в результате чего был создан так называемый Бекбон NFSNET (от англ. backbone — хребет), который состоял уже из тринадцати компьютеров (точнее, компьютерных центров), соединенных друг с другом теми же высокоскоростными линиями связи. Центры располагались в разных городах США и, по сути, являлись одновременно центрами местных компьютерных сетей, так что NFSNET стала сетью, объединяющей другие сети.

1990 Ликвидирована ARPAnet

90-е годы. WWW

Тим Бернерс-Ли

Тим Бернерс-Ли вместе со своими ассистентами создает первоначальную версию языка разметки гипертекста HTML, протокола HTTP передачи HTML-документов, web-сервера и браузера.

Лекция 2

Многоуровневые сетевые модели

Множество вариантов программно-технической реализации передачи информации в сетях породили необходимость создания открытых стандартов – стандартов, официально опубликованных и доступных для разработчиков программно-аппаратных компонентов.

Сетевые модели

Взаимодействие приложений через сеть очень сложно. Разделение его на уровни позаоляет понизть сложность. Каждый уровень взаимодействует через сеть с одноименным уровнем. Для этого уровень пользуется услугами нижележащего уровня и каждый уровень предоставляет услуги вышележащему уровню.

Как устроена сетевая модель

Каждый сетевой уровень подчиняется определенному сетевому протоколу, определяющему набор сетевых служб, присущих данному уровню.

Сетевая служба – это набор функций, которыми обладает определенный сетевой уровень, выполняемых для вышележащего уровня (например, коррекция ошибок).

Каждый сетевой уровень запрашивает определенную сетевую службу от нижележащего уровня. Протокол уровня определяет структуру данных и формат пакета для выполнения запрашиваемой сетевой службы.

Протокол – это правила, которым должен следовать уровень, чтобы реализовать сетевую службу.

Сетевой протокол описывает формат данных или пакетов данных, т. е. правила оформления, которым данные должны подчиняться, чтобы программное обеспечение выполняло ту или иную функцию или сетевую службу (для случая коррекции ошибок протокол описывает какие ошибки сетевая служба должна исправлять).

Эталонная модель OSI

Модель OSI имеет семиуровневую структуру, и можно говорить о взаимодействии узла-отправителя и узла-получателя на каждом уровне модели. При передаче, информация делится на пакеты. Фактически, передаваемая информация формируется на самом верхнем уровне – уровне работающего приложения (прикладном). Далее пакет «спускается» по уровням модели и на каждом из них получает свой заголовок и концевик. Этот заголовок содержит функционально-специфичную для данного уровня информацию о пакете (например, адрес). При получении информации узлом-получателем большой (с заголовками всех уровней) блок информации начинает обрабатываться в обратной, восходящей, последовательности уровней, причём на каждом уровне происходит анализ и отщепление соответствующего заголовка. Таким образом, до процесса-получателя доходит исходный передаваемый блок. На уровнях зачастую сообщение M вместе с заголовками от верхних уровней подвергается изменениям: шифрованию, сжатию, разбиению на части,… поэтому изображенная картинка с одной и той же часть M, вообще говоря, не совсем правильная (зато понятная).

Open Systems Interconnection Reference Model (OSI) (эталонная модель взаимодействия открытых систем) создавалась как единый международный стандарт сетевых технологий.

Набор протоколов называется открытым, если описание и детали протоколов опубликованы.

Система, реализующая открытые протоколы называется открытой системой, несмотря на то, что код программ может быть закрыт.

ISO – международная организация по стандартизации.

OSI ISO — абстрактная модель для сетевых коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к сети. Каждый уровень обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и понятнее.

Существует 7 уровней с помощью которых происходит сетевое взаимодействие. От нижнего уровня к верхнему:

  1. Физический (Physical Layer)

Передача битов данных по сети.

  1. Канальный (уровень передачи данных) (Data Link Layer)

Передача кадров (наборов битов) между двумя компьютерами сети, непосредственно связанных между собой. Определяет, как, кому посылать кадры.

  1. Сетевой (Network Layer)

Управление подсетью, т.е. совокупностью коммуникационного оборудования. Определяет маршруты. Доставляет информацию от отправителя к получателю. Соединение разнородных сетей.

  1. Транспортный (Transport Layer)

С его помощью информация переходит от отправителя к получателю. Этот уровень пользуется услугами, предоставляемыми сетевым уровнем.

  1. Сеансовый (Session layer)

Организация сеансов связи, т.е. долговременного взаимодействия. Определяет, в каком порядке кто передает сообщения друг другу. Решает задачу синхронизации между абонентами.

  1. Уровень предоставления данных (Presentation layer)

Занимается синтаксисом и семантикой данных, передающихся по сети.

  1. Прикладной (Application layer)

Программы.

Общие замечания относительно OSI ISO
  • Избыточность и низкая функциональность верхних уровней.
  • Учет в стандартах всех теоретически возможных ситуаций.
  • Сложность спецификаций для реализации.
  • Очень высокие требования к ресурсам сетевых компьютеров.

Сегодня это референтная (ссылочная) модель. Хотя поддержка этого стека на правительственном уровне (США, Германия, Россия, ...) продолжается, это маргинальное течение в современных сетевых технологиях.

Эталонная модель TCP/IP

Согласно терминологии TCP/IP элементы сетевого уровня называются подсетями (subnetworks). Идеология TCP/IP допускает, чтобы в качестве "подсетей" выступали реальные сети с их собственными стеками протоколов, узлами, шлюзами и т.п. Реализация протоколов TCP/IP оказалась наиболее удачной в версиях BSD4.2 и BSD4.3 операционной системы UNIX. Эта реализация является эталоном для всех последующих.

Рассмотрим теперь эталонную модель, использовавшуюся в компьютерной сети ARPANET, которая является бабушкой нынешних сетей, а также в ее наследнице, всемирной сети Интернет. Хотя краткую историю сети ARPANET мы рассмотрим чуть позднее, некоторые ключевые моменты следует отметить прямо сейчас.

ARPANET  была исследовательской  сетью, финансируемой Министерством обороны США. В конце концов  она объединила сотни университетов и правительственных зданий при  помощи выделенных телефонных линий. Когда впоследствии появились  спутниковые сети и радиосети, возникли большие проблемы при объединении с ними других сетей с помощью имеющихся протоколов.  Понадобилась новая эталонная архитектура. Таким образом, возможность объединять различные сети в единое целое являлась одной из главных  целей с самого начала. Позднее эта архитектура получила название эталонной модели TCP/IP  в соответствии со своими двумя основными протоколами. 

Поскольку Министерство обороны беспокоилось, что ценные хосты, маршрутизаторы и межсетевые шлюзы могут быть мгновенно уничтожены, другая важная задача состояла в том, чтобы добиться способности сети сохранять работоспособность при возможных потерях подсетевого оборудования, так, чтобы при этом связь не прерывалась. Другими словами, Министерство обороны требовало, чтобы соединение не прерывалось, пока функционируют приемная и передающая машины, даже если некоторые промежуточные машины или линии связи внезапно вышли из строя. Кроме того, от архитектуры нужна была определенная гибкость, поскольку предполагалось использовать приложения с различными требованиями, от переноса файлов до передачи речи в реальном времени.

Стеки протоколов

Какие протоколы есть, где участвуют, какие функции нижележащих протоколов используют и какие функции предоставляют вышележащим:

IP - реализует обмен информации дейтаграммами ( IP- пакетами), для адресации узлов сети используется адрес длиной 4 байта; обеспечивает в случае необходимости фрагментацию IP-сегментов; не гарантирует правильность доставки IP-сегментов адресату и, вообще, саму доставку; не имеет средств управления интенсивностью передачи IP-сегментов посылающей стороной (flow control); не гарантирует правильную последовательность IP-сегментов на принимающей стороне. Пакеты сетевого протокола IP могут содержать код, указывающий, какой именно протокол следующего уровня нужно использовать, чтобы извлечь данные из пакета. Это число — уникальный IP-номер протокола. ICMP и IGMP имеют номера, соответственно, 1 и 2. Как система узнает, кому отдать пришедший пакет выше? Ведь на верхнем уровне может быть несколько протоколов. На межсетевом уровне эту проблему решает IP- код верхнего протокола, на транспортном – номер порта.

UDP (IP идентификатор 17) (службе ненадежной, но быстрой, передачи) – протокол передачи датаграмм без установления соединения. Также его называют протоколом «ненадёжной» передачи, в смысле невозможности удостовериться в доставке сообщения адресату, а также возможного перемешивания пакетов . Однако UDP- датаграммы имеют поле контрольная сумма сообщения, что гарантирует правильность доставки сообщения, в случае, если оно дошло до адресата.

TCP (IP идентификатор 6) (службе надежной передачи данных, устанавливающей логическое соединение) – «гарантированный» транспортный механизм с предварительным установлением соединения, предоставляющий приложению надёжный поток данных, дающий уверенность в безошибочности получаемых данных, перезапрашивающий данные в случае потери и устраняющий дублирование данных. TCP позволяет регулировать нагрузку на сеть, а также уменьшать время ожидания данных при передаче на большие расстояния. Более того, TCP гарантирует, что полученные данные были отправлены точно в такой же последовательности.

TCP, и UDP используют для определения протокола верхнего уровня число, называемое портом. Существует список стандартных портов TCP и UDP.

HTTP – протокол TCP-порт 80 или 8080.

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярны следующие стеки: TCP/IP, IPX/SPX, NetBIOS/SM, DECnet, SNA, OSI. Все эти стеки, кроме SNA на нижних уровнях — физическом и канальном, — используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот. Приведены основные используемые в сетях Windows 2000 стеки протоколов. Для функционирования Windows 2000 достаточно стека TCP/ IP - стандарта передачи в сети Интернет. Поддерживаются также стек IPX/SPX - стек маршрутизируемых протоколов, появившийся в сетях NetWare , Microsoft- версия которого называется NWLink, а также NetBIOS/SMB- стек небольших и быстрых, но немаршрутизируемых протоколов.


6. Принципы работы служб прикладного уровня: сетевой адрес процесса, клиентская и серверная стороны службы, протокол. Примеры служб и протоколов.


Протоколы и службы прикладного уровня

Сетевая служба – это набор функций, которые уровень выполняет для вышележащего уровня (например, коррекция ошибок).

Набор свойств и функций, которыми обладает определенный сетевой уровень, называется сетевой службой.

Каждый сетевой уровень запрашивает определенную сетевую службу от нижележащего уровня. Протокол уровня определяет структуру данных и формат пакета для выполнения запрашиваемой сетевой службы.


Принципы работы служб прикладного уровня

Номер порта – это целое число, которое используется для идентификации процесса, выполняющегося на данном компьютере. Cетевой адрес процесса – это пара «IP адрес : номер порта» (например, 127.0.0.1 : 80). От 1 до 1023 – хорошо известные номера портов, От 1023 до 65 535 – другие. По сетевому номеру сообщения, полученного по сети, ОС узнает какому процессу его передать. Cетевое взаимодействие процессов Процесс обращается к службам транспортного уровня: TCP и UDP. Клиентская сторона приложения (службы). Серверная сторона приложения (службы). Протокол.

Клиенты и серверы – программы, т.е. процессы. На одном компьютере могут быть запущено несколько клиентов или несколько серверных процессов.

Клиентская программа формирует запрос, посылает его на сервер, сервер обрабатывает и возвращает ответ.

Примеры служб и протоколов. WWW (HTTP, 80), E-mail (SMTP, 25; POP3, 110; IMAP, 143), DNS (DNS, 53), FTP (FTP, 21,20), Telnet (Telnet, 23); SSH (SSH, 22), синхронизация часов (NTP, 123), передача мультимедиа (RTSP, 554), совместный доступ к файлам (SMB, 445 или NFS, 2049), DNS (Domain Name System), NTP (Network Time Protocol), RTSP (потоковый протокол реального времени (Real Time Streaming Protocol)), SMB (server message block) ( см. Samba), NFS (network file system).