Основные интегралы — различия между версиями

Материал из Вики ИТ мехмата ЮФУ
Перейти к: навигация, поиск
 
(не показано 9 промежуточных версий 2 участников)
Строка 1: Строка 1:
=== Основные интегралы ===
+
{| style="width:65%"
 +
|-
 +
|<math>~\int\!0\, dx = C</math>
 +
|<math>~\int\!\,dx = x +C</math>
 +
|-
 +
| <br />
 +
|-
 +
|<math>~\int\!x^n\,dx = \frac{x^{n+1}}{n+1} + C,\,n \ne -1</math>
 +
|<math>\int {dx\over x}\, = \ln \left|x \right| + C</math>
 +
|-
 +
|<math>\int {dx\over x^2}\, = {-1 \over x} + C</math>
 +
|
 +
|-
 +
|<math>~\int\!\sqrt{x}\,dx = {2 \over 3} x\sqrt{x} +C</math>
 +
|<math>\int {dx\over \sqrt{x}}\, = 2\sqrt{x} + C</math>
 +
|-
 +
|<br />
 +
|-
 +
|<math>\int\!e^x\,dx = e^x + C</math>
 +
|<math>\int\!a^x\,dx = \frac{a^x}{\ln{a}} + C</math>
 +
|-
 +
|<br />
 +
|-
 +
|<math>\int\!\cos{x}\, dx = \sin{x} + C</math>
 +
|<math>\int\!\sin{x}\, dx = -\cos{x} + C</math>
 +
|-
 +
|<br />
 +
|-
 +
|<math>\int\! \csc{x} \, dx = \int\!{dx \over \sin^2 x} = - \operatorname{ctg}\,x + C</math>
 +
|<math>\int\! \sec{x} \, dx = \int\!{dx \over \cos^2 x} = \operatorname{tg}\,x + C</math>
 +
|-
 +
|<br />
 +
|-
 +
|<math>\int\!{dx \over {1+x^2}} = \operatorname{arctg}\,x + C</math>
 +
|-
 +
|<math>\int\!{dx \over \sqrt{1-x^2}} = \arcsin {x} + C</math>
 +
|<math>\int\!{-dx \over \sqrt{1-x^2}} = \arccos {x} + C</math>
 +
|-
 +
|<br />
 +
|-
 +
|<math>\int \operatorname{sh}\,x \, dx = \operatorname{ch}\,x + C</math>
 +
|<math>\int \operatorname{ch}\,x \, dx = \operatorname{sh}\,x + C</math>
 +
|-
 +
|<math>\int\!{dx \over \operatorname{ch}^2 x} = \operatorname{th}\,x + C</math>
 +
|<math>\int\!{dx \over \operatorname{sh}^2 x} = - \operatorname{cth}\,x + C</math>
 +
|}
  
:<math>~\int\!0\, dx = C</math>
+
[[Категория:Математический анализ]]
 
 
:<math>~\int\!a\,dx = ax +C</math>
 
 
 
 
 
:<math>~\int\!\sqrt{x}\,dx = {2 \over 3} x\sqrt{x} +C</math>
 
 
:<math>~\int\!x^n\,dx =  \frac{x^{n+1}}{n+1} + C,\,n \ne -1</math>
 
 
 
 
 
:<math>\int {dx\over x}\, = \ln \left|x \right| + C</math>
 
 
 
:<math>\int {dx\over \sqrt{x}}\, = 2\sqrt{x} + C</math>
 
 
 
:<math>\int {dx\over x^2}\, = {-1 \over x} + C</math>
 
 
 
 
 
:<math>\int\!e^x\,dx = e^x + C</math>
 
 
 
:<math>\int\!a^x\,dx = \frac{a^x}{\ln{a}} + C</math>
 
 
 
 
 
:<math>\int\!\sin{x}\, dx = -\cos{x} + C</math>
 
 
 
:<math>\int\!\cos{x}\, dx = \sin{x} + C</math>
 
 
 
:<math>\int\!{dx \over \cos^2 x} = \operatorname{tg}\,x + C</math>
 
 
 
:<math>\int\!{dx \over \sin^2 x} = - \operatorname{ctg}\,x + C</math>
 
 
 
 
 
:<math>\int\!{dx \over {1+x^2}} = \operatorname{arctg}\,x + C</math>
 
 
 
:<math>\int\!{dx \over \sqrt{1-x^2}} = \arcsin {x} + C</math>
 
 
 
:<math>\int\!{-dx \over \sqrt{1-x^2}} = \arccos {x} + C</math>
 
 
 
 
 
:<math>\int \operatorname{sh}\,x \, dx = \operatorname{ch}\,x + C</math>
 
 
 
:<math>\int \operatorname{ch}\,x \, dx = \operatorname{sh}\,x + C</math>
 

Текущая версия на 02:49, 12 августа 2009

<math>~\int\!0\, dx = C</math> <math>~\int\!\,dx = x +C</math>

<math>~\int\!x^n\,dx = \frac{x^{n+1}}{n+1} + C,\,n \ne -1</math> x \right| + C</math>
<math>\int {dx\over x^2}\, = {-1 \over x} + C</math>
<math>~\int\!\sqrt{x}\,dx = {2 \over 3} x\sqrt{x} +C</math> <math>\int {dx\over \sqrt{x}}\, = 2\sqrt{x} + C</math>

<math>\int\!e^x\,dx = e^x + C</math> <math>\int\!a^x\,dx = \frac{a^x}{\ln{a}} + C</math>

<math>\int\!\cos{x}\, dx = \sin{x} + C</math> <math>\int\!\sin{x}\, dx = -\cos{x} + C</math>

<math>\int\! \csc{x} \, dx = \int\!{dx \over \sin^2 x} = - \operatorname{ctg}\,x + C</math> <math>\int\! \sec{x} \, dx = \int\!{dx \over \cos^2 x} = \operatorname{tg}\,x + C</math>

<math>\int\!{dx \over {1+x^2}} = \operatorname{arctg}\,x + C</math>
<math>\int\!{dx \over \sqrt{1-x^2}} = \arcsin {x} + C</math> <math>\int\!{-dx \over \sqrt{1-x^2}} = \arccos {x} + C</math>

<math>\int \operatorname{sh}\,x \, dx = \operatorname{ch}\,x + C</math> <math>\int \operatorname{ch}\,x \, dx = \operatorname{sh}\,x + C</math>
<math>\int\!{dx \over \operatorname{ch}^2 x} = \operatorname{th}\,x + C</math> <math>\int\!{dx \over \operatorname{sh}^2 x} = - \operatorname{cth}\,x + C</math>